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LIQUID CRYSTALS, 1993, VOL. 14, No. 4, 1221-1226 

A continuum theory for liquid crystals describing 
different degrees of orientational order 

by S. BLENK, H. EHRENTRAUT and W. MUSCHIK* 
Institut fur Theoretische Physik, 

Technische Universitat Berlin PN 7-1, 
Hardenbergstr. 36, W-1000 Berlin 12, Germany 

Starting out with mesoscopic orientational balance equations for each orien- 
tational component of a liquid crystal which is described as a formal mixture, a set of 
independent macroscopic variables, the state space Z ,  is induced 

z: = {p, 0, ve, D,W, A, VA, VVA, D;*)A, q ( X ,  t).  

This set includes a second-order tensorial measure of alignment, called the 
alignment tensor A, and its derivatives. In terms of these state space variables 
constitutive equations are proposed by exploiting the dissipation inequality due to 
Coleman and Noll. The constitutive equations around equilibrium are investigated. 
The results are compared in the case of total alignment to those of Ericksen and 
Leslie, who described the alignment in a liquid crystal with only a macroscopic unit 
director field d(x, t )  indicating the 'mean orientation' of the media. In a recent paper 
Ericksen introduced beside the macroscopic director an additional scalar order 
parameter S(x, t )  and its derivatives (Maier-Saupe theory) which turns out to be the 
uniaxial case in the alignment tensor formulation. Also in this case the restrictions 
on the constitutive equations caused by the dissipation inequality are discussed and 
compared to Ericksen's results. 

1. The mesoscopic concept 
To describe the behaviour of a nematic liquid crystal a common model is used for 

the particles which are assumed to be rigid rods with fixed length [ S ] .  Thus the 
orientation is given by a microscopic director n of unit length 

(1) 
d 

n Z = l ,  n-u=O- with u:=-n. 

Consequently each particle has a set of five independent coordinates (three in position 
space and two in orientation space). For simplicity we presuppose a head-tail symmetry 
for the particles-thus particles with orientation n and - n are indistinguishable-and 
that the particles are needle-shaped. 

Then we combine this microscopic director approach with an orientation 
distribution function (ODF) in order to describe changes in orientational order. 
Therefore we introduce the ODF 

dt 

f(n,x,t)=f(-), (.)=(n,x,t)# x [w3 x [wl, (2) 

whjch has a symmetryf( - n, x, t )  =f(n, x, t) according to the particle symmetry. In the 
case of total alignment, the ODF is given by 

f ( .  1 =S"n + 4x3 t)l) + &(In - d(x, Nl, (3) 
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1222 S. Blenk et al. 

and the microscopic director reduces to the macroscopic director d(x, t )  introduced by 
Ericksen and Leslie [lo] as we have shown in [4]. With this mesoscopic approach a 
new set of balance equations on this higher dimensional space ( . )  containing n as 
independent variable results [2]. Integrating over the additional variable n gives us the 
usual balance equations defined on (x, t )  and additional relations between the 
quantities for one orientational component and the quantities of the orientationai 
mixture respectively [ 13. For example, the relation for the spin density reads 

s(x, t )  = f (  +)In x u( . ) d 2 n .  L (4) 

This equation can only be satisfied by a macroscopic director d(x, t), as it is used in 
the classical ‘director-theories’ of Ericksen [6] and Leslie [lo] (EL theory), if the 
mixture is composed of only one single component, i.e. if the mixture is totally aligned. 
This can also be shown by the following example [4]: presupposing we have a uniaxial 
orientation distribution function 

f(  =.m * d(x, t)l, x, 0, ( 5 )  

(6) 

which is rotating around the axis d(x, t), then d(x, t) ,  of course is zero, and we get 

s(x, t )  = Id(x, t )  x d(x, t )  = 0 in EL theory, 

while 

s(x, t )  = I f ( .  )n x u( . )d2n # 0 in ODF theory, L (7) 

unlessf( .) is the delta function (3). 

2. Exploitation of the dissipation inequality 
The dissipation inequality reads [ 1 11 

a 
-CP(X ,  t)rl(x, t)l + v * CPb, t)rl(x, tMx, t )  - 44x9 t)l - P(X, M x ,  t )  3 0. (8) at 

With the usual ansatz ~ ( x ,  t )  = [r(x, t)]/[e(x, t)] (which can be considered as the 
definition of the temperature O(x, t)), and the definitions for the free energy density 
F(x, t )  and for the excess heat flux vector Q(x, t)  

m, t): = E(X, t )  - e(x, t ~ x ,  ti, Q(X, t): = q(x, t )  - e(x, t ~ ( x ,  t),  (9) 
we insert the balance of internal energy into the dissipation inequality and get 

- p(x, t )  -F(X, t + V(x, tke(x, t )  + v . Q(X, t) + +(x, t ) .  vqx, t )  + qx, t )  3 0, (10) 

(1 1) 

dt  

1 1 
I I 

[ i t  d l  
E(x,  t): = [Vv(x, t)]: t(x, t )  + - [Vs(x, t)]: m(x, t )  -- s(x, t )  . E :  t(x, t). 

We now transform (1 1) using the expressions for s(x, t) ,  t(x, t )  and m(x, t )  we have 
obtained from the orientational balances [4], under the assumption that there is no 
coupling between orientation and diffusion, i.e. Sv( . ) = 0. Introducing DiJx, t )  and 
wiJ(x, t )  for the symmetric and skew-symmetric part of the velocity gradient, and 
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Continuum theory describing degrees of order 1223 

By this calculation the fields s(x, t )  and m(x, t )  in (1 1) are replaced by the new 
macroscopic fields B(x, t), C(x, t), M(x, t), T(x, t), and A(x, t )  which are rnesoscopically 
defined by (13)  to (15).  The quantity A(x, t )  in (15) is a second order alignment tensor, for 
which we can derive a relaxation equation of the form 

Di2)Ajk(X, t )  = Gjk(X, t): = f (  ')n,jNk)( * ) d2n, (16) JS 
with DIz) A(x,  t )  being the co-rotational time derivative of A. Thus we introduce the stats 
space as 

The Coleman-No11 evaluation of the transformed dissipation inequality with the state 
space (17) leads to a set of algebraic differential equations coupling the derivatives of F 
and Q and the constitutive equations, which results for example in 

z: = {p ,  8, v ,~ ,  D, w, A, V,A, V,V,A, D ~ A ,  q ( X ,  t). (17) 

m p ,  0, A, V A )  = 0, A) + w e ,  A,  VA).  (18) 
In equilibrium, a Taylor expansion of the rest dissipation equation around equilibrium, 
under the presupposition H(X) * X 2 O+H(O) = 0 [ f 11, leads to further restrictions to the 
constitutive equations; for example in the case of homogeneous alignment 

results, which is fundamental in the Landau theory of homogeneous alignment [3]. 

3. Constitutive equations 
With the ansatz of W and Q being maximal second order in 

(VO, VA,  VVA, Di2)A, D,  o, r), and maximal linear in the traceless alignment tensor 
a: = A -$S [ 12) we get for the elastic free energy 

[PI +!dB5 + 86)1Via i jVkak j+  [ B Z  +!@7 +Pf3)lViajkViakj  

+ [ P 3  +!d(B9 + PIO) lV ia jkVka j i  + ~4ViaijVjaklalk + P5ajiViajkVlalk  

+ ~ 6 V i a i j a j k V l a l k  + B7Viajkai lVlakj  + P ~ V i a j k V i a j l a l k  + ~ 9 V i a j k V k a i l a l j  

+ ~ l O V i a j k V k a j l a l i ~  (20) 
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1224 S. Blenk et al. 

and for the couple stress tensor 
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Continuum theory describing degrees of order 1225 

for the elastic free energy. Clearly the coefficients in (23) are in their first 
approximation with respect to S the coefficients K,. . .K4 and L,. . .L,Ericksen 
[S] has introduced. This sum of eight terms, each having a factor being linear 
in S, is determined by 16 coefficients which are not independent of each other 
because they are composed of the 10 numbers P,.. ./Ilo. 

(ii) In the case of total alignment (S= 1) the elastic free energy reduces to 

w=(Pl + P6)(vkdk)(v~jj) + (P1 + P 3  + P.5 + 287 + PIO)(diVidk)(djVjdk) 

+ 2(82 -$P7 +$Pf3)(Vjdk)(Vjdk) + ( P 3  + P9)(vjdk)(vkdj), 

2W= k22(Vjdi)(Vjdi) + ( k ,  1 - k 2 2  - k24)(Vidi)(Vjdj) 

(24) 

which compared to the Frank notation [9] 

+ ( k 3 3  - k22)(diVidk)(djVjdk) fk24(Vjdi)(Vidj), (25) 
leads to 

(26) 
k11=2(81+ 282 + 8 3  + 8 6 - $ 8 7  +$b8 +P9)9 

k24=2(P3 + P9)9 

k22=4(P2-$P7 + $ P 8 ) ,  ), 
k 3 3  =2(81 + 2 8 Z  + P 3  + 8.5 +$87  +$b8 + P10). 

(iii) Finally in the one constant approximation we get 

K,1 =K22 =K33 =4& +;P*. (27) 

5. Conclusions 
The main results of the theory presented here may be stated as: 

a fully mesoscopic founded theory is presented, introducing quite naturally a 
second rank alignment tensor [ 123, 
the Ericksen-Leslie theory, as well as the Erickson ’91 theory (introducing the 
Maier-Saupe order parameter) are shown to be special cases (i.e. the case of total 
alignment and the uniaxial case) of this approach, 
the coefficients of the free energy are determined in comparison with the Frank 
theory, 
the Landau condition for equilibrium in liquid crystals can be derived and 
extended to inhomogeneous alignment, 
the couple stress tensor and the stress tensor in equilibrium can be calculated 
explicitly. 

We thank the Sonderforschungsbereich 335 ‘Anisotrope Fluide’ and the Draloric, 
W-8672 Selb, Germany, for financial support, and C. PapenfuD for valuable 
discussions. 
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